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MULTIRESPONSE ROTATABILITY

Andr6 I. KHURI

Department of Statistics, University of Florida, Gainesville, FL 32611, USA

Ab.tract: Since its introduction by Box and Hunter (1957), rotatability of a

response surface design has always been associated with single-response models.

The-present article extends this design concept to multiresponse models. For

these models, rotatability means constant prediction variances and covariances,

and hence correlations, among the predicted responses at points that are

equidistant from the design center. It is shown that multiresponse rotatability

can be achieved if and only if the design is rotatable (in the usual sense) for a

single-response model whose order, or degree, is the highest among all the

response models under consideration. This property does not depend on the

form of the variance-covariance matrix of the responses. r
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1. Introduction
.Ie

Box and Hunter (1957) proposed the idea of rotatability for a single-response model of the

form

y = + f. (1.1)

By definition, a design D for fitting model (1.1) is rotatable if the prediction variance, Var[(§)],

where '( ) is the predicted response at a point , remains constant at all points that are equidistant

from the design center. Equivalently, the quality of prediction, as measured by the size of the

prediction variance, remains invariant to any rotation of the coordinate axes, if the design is

rotatable. This is a desirable feature in a design, but is not an essential one. However, since

rotatability, or near rotatability, can be easily achieved, it is rather insensible to work with a design

that has a considerable deviation from rotatability. Draper and Guttman (1988) and Khuri (1988)

proposed two different measures of rotatability to determine when a design is near rotatable.

In a multiresponse situation several responses are considered simultaneously. Suppose that

we have a system of r response variables; yl, y2 .... Yr; each of which depends on the same set of k

input variables denoted by x1 , xP ....X X within an experimental region A. The input variables are

coded so that the design center is the point at the origin of the coordinates system. The model for

the z response is

Yj( )= p,() + j, z -- 1, 2. r, (1.2)

where pit(e) is a polynomial of degree d, defined at ( = (x2, x. k) t and (i is a random error

(= 1.2,.. r). Model (1.2) can be expressed as

3(td ] " , - ,, , 1.2. r. (1.3)

=. .. ...
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where x t = (1, x is the derived power vector of x t of degree di, which consists of powers

and cross products of powers of x 1, X2 ,...I Xk with suitable multipliers such that

xd1 [dil ( xx) (see Box and Hunter, 1957, Section 5), and Oi is a vector of unknown

parameters (i = 1, 2,..., r). The number of elements of x [di] is pi, where

P k i-1,2 ... , r. (1.4 )

If observations are made on the r responses at n design settings, then from (1.3) we obtain

the models

y = -j3 + -fj, i= 1,2... .r, (1.5)

th

where y, and -are the vectors of observations and random errors, respectively, for the i response.

and Xi is of order nxpi and rank pi (z = 1, 2... r). It is assumed that

E(fi) = 0, i = 1, 2 ,,r, 
(1.6) '

E(f f') 'ij n, Q~ - , . r, 
(1.7) "",,

where In is the identity matrix of order nxn. The models in (1.5) can be displayed as a singlemultiresponse model of the form 

,Ym 
rm 

m + (mm 

(1.8)

(1.8



where Ym = (Y1, Y2' .. Yr), im = (1, .1', . )', m =( (1... and Xr1 is the block-whreY = "" ~' .~i #2 "'" r 2"' .r'

diagonal matrix, diag (X 21 -. , r). By (1.6) and (1.7), the variance-covariance matrix of (m is

t" 0 In, where E = (aij) is the variance-covariance matrix of the responses of order rxr and 0 is

the direct, or Kronecker, product symbol. The best linear unbiased estimator of 8m is
-0%

/m = [X' (-_ 0 In)X m] rnf(m  ' ® In) Ym. (1.9)

The variance-covariance matrix of /3 m is given by

Var(3m) = Xim(_' 0 In') Xml• (1.10)

Let Y'Tj( ) be the rx 1 vector of predicted responses at a point in the region A, that is,

where

(= [dI] , = 1, 2. r, (1.12)

and 3, is the best linear unbiased estimator of ;3, ol)tained from (1.9). Formula (1.11) can t hen he

written as

Yn() = . (1.13)

(.,[, , [, , ,r])

where A(c) = diag x F..... . rom 1.10) and (1.13) the variance-covariirce matrix

Om(9 is equal to
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Va{$'m( -)] 0 ® n) -Xm] 4(e). (1.14)

Definition 1.I. A design D for fitting the multiresponse model in (1.8) is said to be rotatable if

Var [m()] is constant at all points, , that are equidistant from the origin.

This definition is equivalent to stating that, when the design is rotatable, the variances and C

covariances of the predicted responses are constant on spheres (hyperspheres, in general) centered at

the origin. This implies that the r(r-1)/2 correlations among the predicted responses are also

constant on such spheres. The same thing can be said about the variance of any linear combination,

r
r c- 5'.( ), of the predicted responses. This is a desirable feature since certain linear combinations

of the responses may be of special interest to the experimenter. For example, it may be

experimentally difficult to obtain independent measurements on some response. If, however, this I
response is linearly related to the other responses (because of physical or chemical laws), then its

value can be determined in terms of the other responses (see Box et al., 1973, Section 6).

2. Conditions for Multiresponse Rotatability

Let and r7 be two points that arc the same distance from the origin. There is an

orthogonal matrix, T, of order kxk such that Yj = T . Let z = (1, Y71)1, then z Rx, where

x = (1, f)' and

R = diag (1, T). (2.1)

The matrix R is orthogonal of order (k+l)x(k+l). The derived power vector of degree d1 of z is of

the form

[d] [did [d2)z R = i x i = 1, 2- r (2.2)
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where R [d i is the dith Schldflian matrix of R of order pixpi and pi is defined in (1.4). See, for

example, Box and Hunter (1957, Section 5) for more details concerning Schldflian matrices. It is

known that R [di] is an orthogonal matrix since R is. The vectors of predicted responses at and Tj

are m( ) and 'm(r/), respectively. The variance-covariance matrix of 5 m({) is given in (1.14).

Similarly, the variance-covariance matrix of m(r) can be written as

Var [ m()] = A'(_7) [Xn(' 0 In) Xm]- A('), (2.3)

where A(r1 ) = diag (z(d1I, z [d2] ..., z[dr ])- Using the transformation (2.2), formula (2.3) can be

rewritten as

Var Rin(tu)] '4 ' x( In) Cm] S A(4)

-1

='()[~n 0 In) XmS] .(), (2.4)~ ~D

where S is the orthogonal matrix,

= =iiag (R[dl] R [dt. [dr]) (2.5) S

By Definition 1.1. multiresponse rotatability requires that the terms on the right sides of

1.1-1) and (2.4) be equal for all -and R. Since E is an arbitrary variance-covariance matrix. this

equality should also hold for all positive definite matrices. E, of order rxr. Now,

-In) m and S' X' In S can be partitioned as

In) ~ and ~ ~~ !n
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( - ® In) .m = (") X X,)

S 1 X ( -  ® In ) Xm S = 
" R [d i x X X [d , )

where o' is the (ij) element of E-1. In order to achieve multiresponse rotatability we must

therefore have

j R [d j] I [d jj] ,
_] Xj j ij 1, 2,.. r, (2.6)

for every orthogonal matrix, R, of the form given in (2.1).

Now, let t be the vector (1, t, t 2 -... , tk)'. Its derived power vector of degree di s t[dis

(i = 1, 2,..., r). Consider the expression

Qj= X Xj i,j =l, 2,..., r. (2.7)

Note that

[dj= ( 1 [d j] [d] t[d] [dj]  , [dJ] t[d j])

dj. tci, dj %Za
x 2 (. r, (2.8)

where Xu (1, and is the vector of uth design settings for the input variables

(u = 1.2... n). Formula (2.7) can then be written as

a
o

*1
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d,+d1

= (U

d,+dj

n
E + ;,j= 1 . r, (2.9)u=1 / 1 u  ....

h h

where xuj is the value of the r input variable at the u experimental run (= 1, 2 ,..., k-

u = 1, 2,..., n). By applying the multinominal expansion to (2.9) it can be verified that the
6

1 Akcoefficient of t1 t 2 ... tk in this expansion is

(di + dj)! 16 * 1 .: ~~(1 l 1 ++.. . ) , , 2,... r, /2.10)
-' ]- (61) ! (dj + di 6 )!

where 61, 6. are nonnegative integers such that 6 = E6 < di + d, and (1 621... k is a

design moment of order 6 defined as

61 ,62. . 'k , xA x,,... . (2.1). .. -k i i __ l l,- . k( 1 )

The quantity Q j is therefore a generating function for the design moments through order d, + d

(aj = 1, 2. r). If the design is rotatable, then from (2.6) and (2.7) we obtain I
Q = ...t [d i] Rj[d j] .X' Xj [dj] t[dj]

1 13 [d[d 3 ]
(t' I')[d i X (Rt) , 21-= . r. (2.12)

Thus. Q, remains unchanged by any orthogonal transformation of t of the form (2.1) if and only if

the design is rotatable. Since Qj, is a polynomial of degree d. + (1) in tt,  t(., it must, be a

k
function of E t . that is.

V= 1
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S=S=ei* ( t z,J = 1. 2. r, (.3

0k

where e= d, + d,)/2 is the greatest integer in (di + dj)/2. The coefficient of t t6..., tk in

(2.13) is, therefore, zero if any of the 61 (1 = 1, 2,..., k) are odd integers. If all the 61 are even. then

the coefficient is

I)1
, 6= E 6, Kdi + d zj 1 .r. (2.14)

kp

By comparing (2.10) with (2.14) it can be concluded that a design is rotatable if and only if the

design moments through order di + dj (ij = 1, 2..., r) are of the form

0, if any 61 is odd

'-]

(16' 262... kk) = (2.15)

Ab I (61)!
if all the 61 are even,Ak2 /2 H (6,/2)!!

where A,' is the quantity

S. /2

, a1 2 (6/2)! (d, + (I - ! 6= ' (2.16) ,
(dij + ,d) :

Since (2.15) must hold for all t. (= 1. 2...., r), it follows that the moments through order 2d. where .-.

d = max (d,,), of a rotatable design must be of the form
<. r
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0, if any 6, is odd

(161 262 ... k'k) (2.17)

k
A H (61)!

6/--k ,/2) , if all the 61 are even,/2 k, ,

k
where = 61 < 2d. and A, is given by

6/2
A a, 2 1(612)! (2d - 6)!

A6 = 2 (d)!' (2.18) 1d)!
where ab is the value of a) in (2.16), which corresponds to t = * and i* is such that I

d. d, = max (d0 ).

On the basis of (2.17) it can finally be concluded that the necessary and sufficient condition I
to achieve multiresponse rotatability is that the design be rotatal)le for a single-response model of

order d = max (d,). N
3. Examples

Example 1. ('nsider a niultiresponse system consisting of the three response models

Yt= 30 + 31 1 XI + 11 2x- + ' 1 13-x' + 'I1

Y2 3,0 + ,,lxl + 1, 2.X + 14,:X:3 + ,

"* 1

'."
% % %
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3 3 + 3

Y3 03 0 +. E 33iXi+ E. 033iXiX,+ !0 3iiX;±E

Here, k = 3, r 3, d= d, = 1, d3 = 2, hence d = 2. The variance-covariance matrix of the

responses is assumed to be

S2 1 01
1 3 2 . (3.1)

0 2 5

The models are fitted using the design D given in Table 1. This is a second-order rotatable central

composite design with one center point. By (2.17), D is also rotatable in the multiresponse sense.

Using formula (1.14) it can be verified that

Varj k(_)] = .1333 + .1464 p2  (3.2)

Va =k()] = .20 + .2197 p2  (3.3)

Va 3(0] = 3.4671 - 1.9285 p+ + .5617 p (3.4)

Co (), ,(_] = .0667 + .0732 p2 
(3.5)

Cov[yI(), Y3()] 0 (3.6)

Cov[y'2 (_), Y3( ]) = .1333 + .1464 p 2, (3.7)

where p2  x 2 + x, + x2 . Thus, the variances and covariances of the three predicted responses are

-....... .......... ......... pJ
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constant on spheres centered at the origin.

To demonstrate that multiresponse rotatability (foes not depend on the form of S. another

value of this matrix is now used, namely,

3 5 1
5 9 3

L 3 4

Formulas (3.2) - (3.7) become

Var[,( ] = .20 + .2197 p2

Var,(] = .60 + .659 p2

Var[3(.]= 1.1884 - .3819 p 2 + .1652 p4

('ovti,({), 9({)] =.3333 + .3661 p-

Cov[I(f), Y3(0)] - .0667 + .0732 p2

CovL 2 (.), S',()] .-20 + .2197 p.

Example 2. Consider again the three-response svstem Ls il Example I. except, thaty. is now P

r'represented by the secondl-ordler model
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Y2 020 +. 031 Xi+ r' 03 *.XiXj+ E0iixi 2

The design D and the variance-covariance matrix E are the same as in Table 1 and formula (3.1),

respectively. In this case, the variances and covariances of the three predicted responses are

Var[m'i(_)] = .1333 + .1464 p2

I.

Var[N(O]) = 2.5042 - 1.4675 p 2 + .413 p4

Var[ S( )] = 4.9418 - 3.0083 p 2 + .8261 p 4

Cov[iGM), p2(0)] = .0667 + .0732 p 2

Gov[M() Y3()] = 0

Cov[ 2 (), Y3()] = 1.9767 - 1.2034 p2 + .3304 p 4 .

4. Concluding Remarks

i) In practice, the variance-covariance matrix E of the responses is unknown. Hence, the

estimator m in (1.9) and its variance-covariance matrix given in (1.10) cannot be computed.

An estimator of E is therefore needed. There are several possible estimators, two of which are

given below (see Srivastava and Giles, 1987, Section 2.3)

(4.1)

- ( .

=' .- (53k), (4.2)
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where

a.* YiTD n X(: X X iin i.. - X.( X' v/nl (4.3)

ij=Y'I n - XX[X-'X - y/n, (4.4)

where X is the matrix for a single-response model of order d = nax (d,,). The first estimator
t<.<r

was proposed by Zellner (1962). If E is substituted by E and E in (1.9), we get the estimators

/ms [~n( - ® 1n) .m]' _X( - ® n) Ym (4.5)

Ims L X (' In) fm] Nm(-' ® In) Ym, (4.6)

respectively. Substituting these estimators for 3 m in (1.13) leads to the predicted response

vectors 'ms( ) and ms( ), respectively.

The true variance-covariance matrices of ",ls and , ms are. to order ()(n-).

asymptotically equal to the variance-covariance matrix of Jim, which is given in (1.10). See

Srivastava and Giles (1987, Section 3.3). Approximate expressions for Varl-..s()- and

Var () can then be obtained from (1.14) by substituting E by and respectively.

Hence, for large n these expressions are almost constant on spheres centered at the origin, if the ,

design is rotatable.

ii) rTe constancy of prediction variances and covariances on spheres when the design is rotatable

results in constant correlations among the predicted responses. This interesting property is
-'a

particularly useful for simultaneous inference making involving the responses. It would be

q
quite discomforting if such inference were to change by a mere rotation of the coordinate axes. :

HS
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which can occur in the absence of multiresponse rotatability.
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Table 1

The design points for Example I

Xl x2  x 3

-1.0 -1.0 -1.0
0 1

1.0 -1.0 -1.0

11
-1.0 1.0 -1.0

-1.0 -1.0 1.0

1.0 1.0 -1.0

1.0 1.0 1.0 N

-1.0 1.0 1.0

1.0 1.0 1.0 ¢

1.6818 0.0 0.0

- 1.6818 0.0 0.0

0.0 1.6818 0.0

0.0 -1.6818 0.0

0.0 0.0 1.6818

0.0 0.0 -1.6818

0.0 0.0 0.01

I
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